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qcc: An R package for quality control
charting and statistical process control
by Luca Scrucca

Introduction

The qcc package for the R statistical environment al-
lows to:

• plot Shewhart quality control charts for contin-
uous, attribute and count data;

• plot Cusum and EWMA charts for continuous
data;

• draw operating characteristic curves;

• perform process capability analyses;

• draw Pareto charts and cause-and-effect dia-
grams.

I started writing the package to provide the stu-
dents in the class I teach a tool for learning the basic
concepts of statistical quality control, at the introduc-
tory level of a book such as Montgomery (2000). Due
to the intended final users, a free statistical environ-
ment was important and R was a natural candidate.

The initial design, albeit it was written from
scratch, reflected the set of functions available in S-
Plus. Users of this last environment will find some
similarities but also differences as well. In particu-
lar, during the development I added more tools and
re-designed most of the library to meet the require-
ments I thought were important to satisfy.

Creating a qcc object

A qcc object is the basic building block to start with.
This can be simply created invoking the qcc function,
which in its simplest form requires two arguments: a
data frame, a matrix or a vector containing the ob-
served data, and a string value specifying the con-
trol chart to be computed. Standard Shewhart con-
trol charts are available. These are often classified ac-
cording to the type of quality characteristic that they
are supposed to monitor (see Table 1).

Control charts for continuous variables are usu-
ally based on several samples with observations col-
lected at different time point. Each sample or “ra-
tionale group” must be provided as a row of a data
frame or a matrix. The function qcc.groups can be
used to easily group a vector of data values based
on a sample indicator. Unequal sample sizes are al-
lowed.

Suppose we have extracted samples for a charac-
teristic of interest from an ongoing production pro-
cess:

> data(pistonrings)

> attach(pistonrings)

> dim(pistonrings)

[1] 200 3

> pistonrings

diameter sample trial

1 74.030 1 TRUE

2 74.002 1 TRUE

3 74.019 1 TRUE

4 73.992 1 TRUE

5 74.008 1 TRUE

6 73.995 2 TRUE

7 73.992 2 TRUE

...

199 74.000 40 FALSE

200 74.020 40 FALSE

> diameter <- qcc.groups(diameter, sample)

> dim(diameter)

[1] 40 5

> diameter

[,1] [,2] [,3] [,4] [,5]

1 74.030 74.002 74.019 73.992 74.008

2 73.995 73.992 74.001 74.011 74.004

...

40 74.010 74.005 74.029 74.000 74.020

Using the first 25 samples as training data, an X chart
can be obtained as follows:

> obj <- qcc(diameter[1:25,], type="xbar")

By default a Shewhart chart is drawn (see Figure 1)
and an object of class ‘qcc’ is returned. Summary
statistics can be retrieved using the summary method
(or simply by printing the object):

> summary(obj)

Call:

qcc(data = diameter[1:25, ], type = "xbar")

xbar chart for diameter[1:25, ]

Summary of group statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

73.99 74.00 74.00 74.00 74.00 74.01

Group sample size: 5

Number of groups: 25

Center of group statistics: 74.00118

Standard deviation: 0.009887547

Control limits:

LCL UCL

73.98791 74.01444
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type Control charts for variables

"xbar" X chart Sample means are plotted to
control the mean level of a con-
tinuous process variable.

"xbar.one" X chart Sample values from a one–at–
time data process to control the
mean level of a continuous pro-
cess variable.

"R" R chart Sample ranges are plotted to
control the variability of a con-
tinuous process variable.

"S" S chart Sample standard deviations are
plotted to control the variabil-
ity of a continuous process vari-
able.

type Control charts for attributes
"p" p chart The proportion of nonconform-

ing units is plotted. Control
limits are based on the binomial
distribution.

"np" np chart The number of nonconforming
units is plotted. Control limits
are based on the binomial dis-
tribution.

"c" c chart The number of defectives per
unit are plotted. This chart
assumes that defects of the
quality attribute are rare, and
the control limits are computed
based on the Poisson distribu-
tion.

"u" u chart The average number of defec-
tives per unit is plotted. The
Poisson distribution is used to
compute control limits, but, un-
like the c chart, this chart does
not require a constant number
of units.

Table 1: Shewhart control charts available in the qcc package.
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The number of groups and their sizes are reported in
this case, whereas a table is provided in the case of
unequal sample sizes. Moreover, the center of group
statistics (the overall mean for an X chart) and the
within-group standard deviation of the process are
returned.

The main goal of a control chart is to monitor
a process. If special causes of variation are present
the process is said to be “out of control” and actions
are to be taken to find, and possibly eliminate, such
causes. A process is declared to be “in control” if all
points charted lie randomly within the control limits.
These are usually computed at ±3σs from the cen-
ter. This default can be changed using the argument
nsigmas (so called “american practice”) or specify-
ing the confidence level (so called “british practice”)
through the confidence.level argument.

Assuming a Gaussian distribution is appropriate
for the statistic charted, the two practices are equiv-
alent, since limits at ±3σs correspond to a two-tails
probability of 0.0027 under a standard normal curve.

Instead of using standard calculations to compute
the group statistics and the corresponding control
limits (see Montgomery (2000), Wetherill and Brown
(1991)), the center, the within-group standard devia-
tion and the control limits may be specified directly
by the user through the arguments center, std.dev
and limits, respectively.

xbar Chart
for diameter[1:25, ]
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Figure 1: A X chart for samples data.

Shewhart control charts

A Shewhart chart is automatically plotted when an
object of class ‘qcc’ is created, unless the qcc func-
tion is called with the argument plot=FALSE. The
method responsible for plotting a control chart can
however be invoked directly as follows:

> plot(obj)

giving the plot in Figure 1. This control chart
has the center line (horizontal solid line), the up-
per and lower control limits (dashed lines), and the

sample group statistics are drawn as points con-
nected with lines. Unless we provide the argu-
ment add.stats=FALSE, at the bottom of the plot
some summary statistics are shown, together with
the number of points beyond control limits and the
number of violating runs (a run has length 5 by de-
fault).

Once a process is considered to be “in-control”,
we may use the computed limits for monitoring new
data sampled from the same ongoing process. For
example,

> obj <- qcc(diameter[1:25,], type="xbar",

+ newdata=diameter[26:40,])

plot the X chart for both calibration data and new
data (see Figure 2), but all the statistics and the con-
trol limits are solely based on the first 25 samples.

xbar Chart
for diameter[1:25, ] and diameter[26:40, ]
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Figure 2: A X chart with calibration data and new
data samples.

If only the new data need to be plotted we may
provide the argument chart.all=FALSE in the call
to the qcc function, or through the plotting method:

> plot(obj, chart.all=FALSE)

Many other arguments may be provided in the
call to the qcc function and to the corresponding
plotting method, and we refer the reader to the on–
line documentation for details (help(qcc)).

As reported on Table 1, an X chart for
one–at–time data may be obtained specifying
type="xbar.one". In this case the data charted
are simply the sample values, and the within-group
standard deviation is estimated by moving ranges of
k (by default 2) points.

Control charts for attributes mainly differ from
the previous examples in that we need to provide
sample sizes through the size argument (except for
the c chart). For example, a p chart can be obtained
as follows:

> data(orangejuice)

> attach(orangejuice)
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> orangejuice

sample D size trial

1 1 12 50 TRUE

2 2 15 50 TRUE

3 3 8 50 TRUE

...

53 53 3 50 FALSE

54 54 5 50 FALSE

> obj2 <- qcc(D[trial], sizes=size[trial], type="p")

where we use the logical indicator variable trial to
select the first 30 samples as calibration data.

Operating characteristic function

An operating characteristic (OC) curve provides in-
formation about the probability of not detecting a
shift in the process. This is usually referred to as the
type II error, that is, the probability of erroneously
accepting a process as being “in control”.

The OC curves can be easily obtained from an ob-
ject of class ‘qcc’:

> par(mfrow=c(1,2))

> oc.curves(obj)

> oc.curves(obj2)

The function oc.curves invisibly returns a ma-
trix or a vector of probabilities values for the
type II error. More arguments are available (see
help(oc.curves)), in particular identify=TRUE al-
lows to interactively identify values on th e plot.
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Figure 3: Operating characteristics curves.

Cusum charts

Cusum charts display how the group summary
statistics deviate above or below the process center
or target value, relative to the standard error of the
summary statistics. They are useful to detect small
and permanent variation on the mean of the process.

The basic cusum chart implemented in the qcc
package is only available for continuous variables at
the moment. Assuming a ‘qcc’ object has been cre-
ated, we can simply input the following code:

> cusum(obj)

and the resulting cusum chart is shown in Figure 4.
This displays on a single plot both the positive de-
viations and the negative deviations from the target,
which by default is set to the center of group statis-
tics. If a different target for the process is required,
this value may be provided through the argument
target when creating the object of class ‘qcc’. Two
further aspects may need to be controlled. The ar-
gument decision.int can be used to specifies the
number of standard errors of the summary statistics
at which the cumulative sum displays an out of con-
trol; by default it is set at 5. The amount of shift in
the process to be detected by the cusum chart, mea-
sured in standard errors of the summary statistics, is
controlled by the argument se.shift, by default set
at 1.

Cusum Chart
for diameter[1:25, ] and diameter[26:40, ]
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Figure 4: Cusum chart.

EWMA charts

Exponentially weighted moving average (EWMA)
charts smooth a series of data based on a moving av-
erage with weights which decay exponentially. As
for the cusum chart, also this plot can be used to de-
tect small and permanent variation on the mean of
the process.

The EWMA chart depends on the smoothing pa-
rameter λ, which controls the weighting scheme ap-
plied. By default it is set at 0.2, but it can be modified
using the argument lambda. Assuming again that a
‘qcc’ object has been created, an EWMA chart can
be obtained as follows:

> ewma(obj)

and the resulting graph is shown in Figure 5.
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EWMA Chart
for diameter[1:25, ] and diameter[26:40, ]
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Figure 5: EWMA chart.

Process capability analysis

Process capability indices for a characteristic of
interest from a continuous process can be ob-
tained through the function process.capability.
This takes as mandatory arguments an object of
class ‘qcc’ for a "xbar" or "xbar.one" type, and
spec.limits, a vector specifying the lower (LSL)
and upper (USL) specification limits. For example,
using the previously created ‘qcc’ object, we may
simply use:

> process.capability(obj,

+ spec.limits=c(73.95,74.05))

Process Capability Analysis

Call:

process.capability(object = obj,

spec.limits = c(73.95, 74.05))

Number of obs = 125 Target = 74

Center = 74.00118 LSL = 73.95

StdDev = 0.009887547 USL = 74.05

Capability indices:

Value 2.5% 97.5%

Cp 1.686 1.476 1.895

Cp_l 1.725 1.539 1.912

Cp_u 1.646 1.467 1.825

Cp_k 1.646 1.433 1.859

Cpm 1.674 1.465 1.882

Exp<LSL 0% Obs<LSL 0%

Exp>USL 0% Obs>USL 0%

The graph shown in Figure 6 is an histogram of
data values, with vertical dotted lines for the up-
per and the lower specification limits. The target is
shown as a vertical dashed line and its value can be
provided using the target argument in the call; if
missing, the value from the ‘qcc’ object is used if

available, otherwise the target is set at the middle
value between the specification limits.

The dashed curve is a normal density for a Gaus-
sian distribution matching the observed mean and
standard deviation. The latter is estimated using the
within-group standard deviation, unless a value is
specified in the call using the std.dev argument.

The capability indices reported on the graph are
also printed at console, together with confidence
intervals computed at the level specified by the
confidence.level argument (by default set at 0.95).

Process Capability Analysis
for diameter[1:25, ]
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Figure 6: Process capability analysis

A further display, called “process capability six-
pack plots”, is also available. This is a graphical sum-
mary formed by plotting on the same graphical de-
vice:

• a X chart

• a R or S chart (if sample sizes > 10)

• a run chart

• a histogram with specification limits

• a normal Q–Q plot

• a capability plot

As an example we may input the following code:

> process.capability.sixpack(obj,

+ spec.limits=c(73.95,74.05),

+ target= 74.01)

Pareto charts and cause-and-effect

diagrams

A Pareto chart is a barplot where the categories are
ordered using frequencies in non increasing order,
with a line added to show their cumulative sum.
Pareto charts are useful to identify those factors that
have the greatest cumulative effect on the system,
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and thus screen out the less significant factors in an
analysis.

A simple Pareto chart may be drawn using the
function pareto.chart, which in its simpler form re-
quires a vector of values. For example:

> defect <- c(80, 27, 66, 94, 33)

> names(defect) <-

+ c("price code", "schedule date",

+ "supplier code", "contact num.",

+ "part num.")

> pareto.chart(defect)

The function returns a table of descriptive statis-
tics and the Pareto chart shown in Figure 7. More
arguments can be provided to control axes la-
bels and limits, the main title and bar colors (see
help(pareto.chart)).
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schedule date
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Figure 7: Pareto chart.

A cause-and-effect diagram, also called an
Ishikawa diagram (or fish bone diagram), is used to
associate multiple possible causes with a single ef-
fect. Thus, given a particular effect, the diagram is
constructed to identify and organize possible causes
for it.

A very basic implementation of this type of dia-
gram is available in the qcc package. The function
cause.and.effect requires at least two arguments:
cause, a list of causes and branches providing de-
scriptive labels, and effect, a string describing the
effect. Other arguments are available, such as cex

and font which control, respectively, the character
expansions and the fonts used for labeling branches,
causes and the effect. The following example creates
the diagram shown in Figure 8.

> cause.and.effect(

+ cause=list(Measurements=c("Microscopes",

+ "Inspectors")

+ Materials=c("Alloys",

+ "Suppliers"),

+ Personnel=c("Supervisors",

+ "Operators"),

+ Environment=c("Condensation",

+ "Moisture"),

+ Methods=c("Brake", "Engager",

+ "Angle"),

+ Machines=c("Speed", "Bits",

+ "Sockets")),

+ effect="Surface Flaws")

Cause−and−Effect diagram

Surface Flaws
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Figure 8: Cause-and-effect diagram.

Tuning and extending the package

Options to control some aspects of the qcc package
can be set using the function qcc.options. If this is
called with no arguments it retrieves the list of avail-
able options and their current values, otherwise it
sets the required option. From a user point of view,
the most interesting options allow to set the plotting
character and the color used to highlight points be-
yond control limits or violating runs, the run length,
i.e. the maximum value of a run before to signal a
point as out of control, the background color used to
draw the figure and the margin color, the character
expansion used to draw the labels, the title and the
statistics at the bottom of any plot. For details see
help(qcc.options).

Another interesting feature is the possibility to
easily extend the package defining new control
charts. Suppose we want to plot a p chart based
on samples with different sizes. The resulting con-
trol chart will have non–constant control limits and,
thus, it may result difficult to read by some opera-
tors. One possible solution is to draw a standard-
ized control chart. This can be accomplished defin-
ing three new functions: one which computes and
returns the group statistics to be charted (i.e. the z
scores) and their center (zero in this case), another
one which returns the within-group standard devia-
tion (one in this case), and finally a function which
returns the control limits. These functions need to be
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called stats.type , sd.type and limits.type , re-
spectively, for a new chart of type "type ". The fol-
lowing code may be used to define a standardized p
chart:

stats.p.std <- function(data, sizes)

{

data <- as.vector(data)

sizes <- as.vector(sizes)

pbar <- sum(data)/sum(sizes)

z <- (data/sizes - pbar)/sqrt(pbar*(1-pbar)/sizes)

list(statistics = z, center = 0)

}

sd.p.std <- function(data, sizes) return(1)

limits.p.std <- function(center, std.dev, sizes, conf)

{

if (conf >= 1) { lcl <- -conf

ucl <- +conf }

else

{ if (conf > 0 & conf < 1)

{ nsigmas <- qnorm(1 - (1 - conf)/2)

lcl <- -nsigmas

ucl <- +nsigmas }

else stop("invalid 'conf' argument.") }

limits <- matrix(c(lcl, ucl), ncol = 2)

rownames(limits) <- rep("", length = nrow(limits))

colnames(limits) <- c("LCL", "UCL")

return(limits)

}

Then, we may source the above code and obtain
the control charts in Figure 9 as follows:

# set unequal sample sizes

> n <- c(rep(50,5), rep(100,5), rep(25, 5))

# generate randomly the number of successes

> x <- rbinom(length(n), n, 0.2)

> par(mfrow=c(1,2))

# plot the control chart with variable limits

> qcc(x, type="p", size=n)

# plot the standardized control chart

> qcc(x, type="p.std", size=n)

p Chart
for x

Group

G
ro

up
 s

um
m

ar
y 

st
at

is
tic

s

0.
0

0.
1

0.
2

0.
3

0.
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LCL 

UCL

Number of groups = 15
Center = 0.1931429
StdDev = 0.3947641

LCL is variable
UCL is variable

Number beyond limits = 0
Number violating runs = 0

p.std Chart
for x

Group

G
ro

up
 s

um
m

ar
y 

st
at

is
tic

s

−
3

−
2

−
1

0
1

2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LCL 

UCL

Number of groups = 15
Center = 0
StdDev = 1

LCL = −3
UCL = 3

Number beyond limits = 0
Number violating runs = 0

Figure 9: A p chart with non–constant control limits
(left panel) and the corresponding standardized con-
trol chart (right panel).

Summary

In this paper we briefly describe the qcc package.
This provides functions to draw basic Shewhart
quality control charts for continuous, attribute and
count data; corresponding operating characteristic
curves are also implemented. Other statistical qual-
ity tools available are Cusum and EWMA charts for
continuous data, process capability analyses, Pareto
charts and cause-and-effect diagram.
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Least Squares Calculations in R
Timing different approaches

by Douglas Bates

Introduction

The S language encourages users to become pro-
grammers as they express new ideas and techniques
of data analysis in S. Frequently the calculations in
these techniques are expressed in terms of matrix op-
erations. The subject of numerical linear algebra -

how calculations with matrices can be carried out
accurately and efficiently - is quite different from
what many of us learn in linear algebra courses or
in courses on linear statistical methods.

Numerical linear algebra is primarily based on
decompositions of matrices, such as the LU decom-
position, the QR decomposition, and the Cholesky
decomposition, that are rarely discussed in linear al-
gebra or statistics courses.

In this article we discuss one of the most common
operations in statistical computing, calculating least
squares estimates. We can write the problem mathe-
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